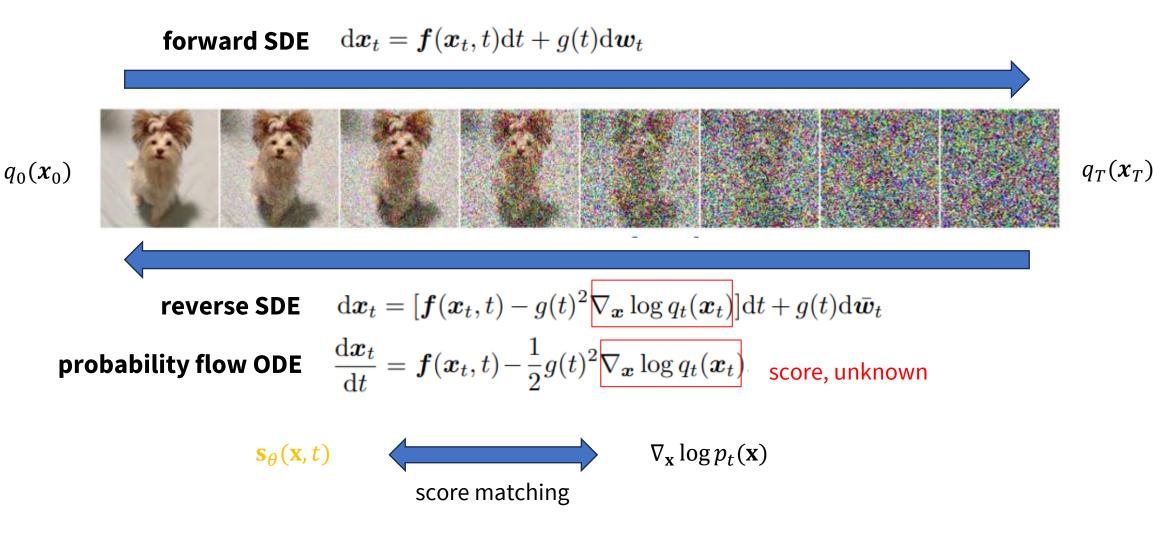
Consistency is All You Need

Kaiwen Zheng 2023.12.08

Content

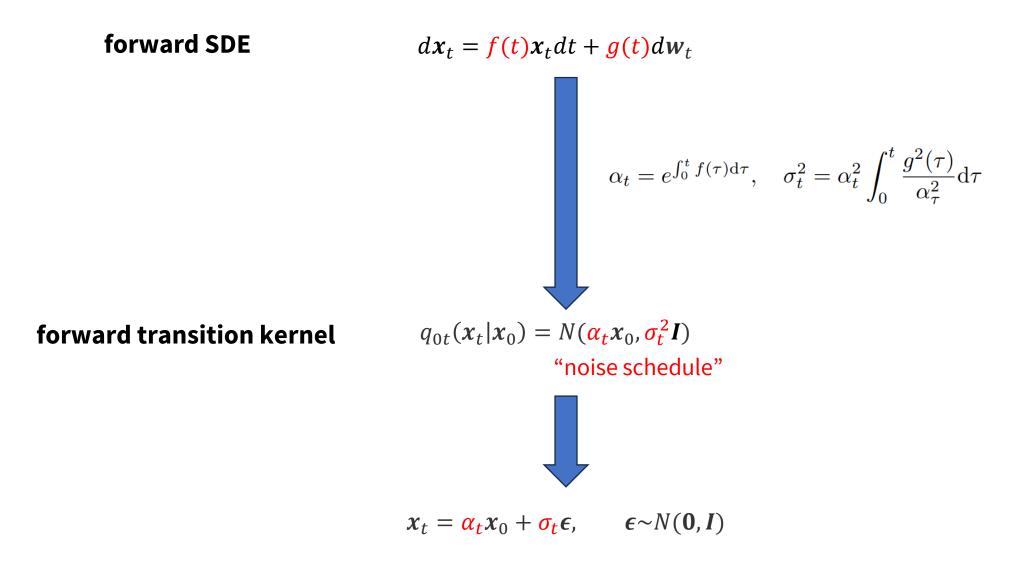
• Consistency Models (ICML 2023)


Technical Improvement

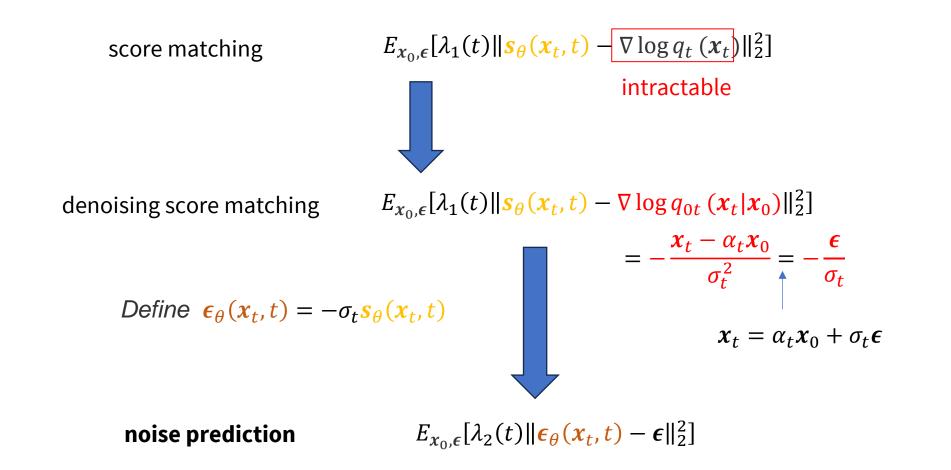
- Improved Techniques for Training CM (ICLR 8866)
- Consistency Trajectory Models (ICLR 8666)

Applications to Text-to-Image Model

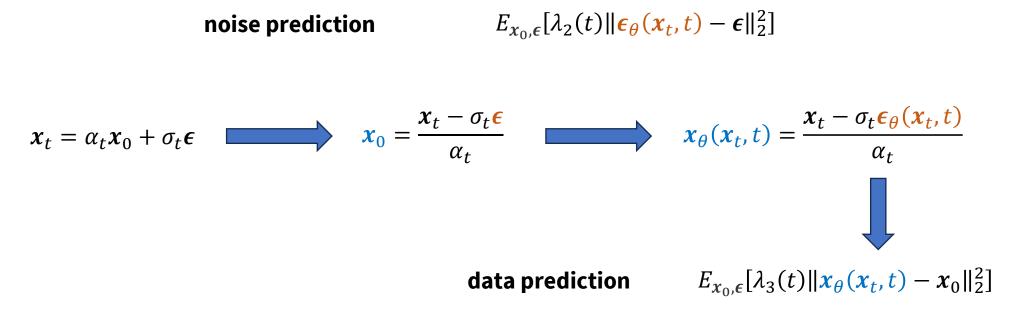
- Latent Consistency Models (ICLR 6555)
- LCM-LoRA


Diffusion Probabilistic Models (DPMs)

Song Y, Sohl-Dickstein J, Kingma DP, et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021.


Consistency Models

The Forward Process



Consistency Models

Parameterizations in DPMs

Parameterizations in DPMs

Model Type	Training Objective	Example Paper
"noise": noise prediction model ϵ_{θ}	$E_{x_0,\epsilon,t}\left[\omega_1(t) \epsilon_ heta(x_t,t)-\epsilon _2^2 ight]$	DDPM, Stable-Diffusion
"x_start": data prediction model $x_ heta$	$E_{x_0,\epsilon,t}\left[\omega_2(t) x_ heta(x_t,t)-x_0 _2^2 ight]$	DALL-E 2
"v": velocity prediction model v_{θ}	$E_{x_0,\epsilon,t}\left[\omega_3(t) v_ heta(x_t,t) - (lpha_t\epsilon - \sigma_t x_0) _2^2 ight]$	<u>Imagen Video</u>
"score": marginal score function s_{θ}	$E_{x_0,\epsilon,t}\left[\omega_4(t) \sigma_t s_ heta(x_t,t) + \epsilon _2^2 ight]$	<u>ScoreSDE</u>

Content

• Consistency Models (ICML 2023)

Technical Improvement

- Improved Techniques for Training CM (ICLR 8866)
- Consistency Trajectory Models (ICLR 8666)

Applications

- Latent Consistency Models (ICLR 6555)
- LCM-LoRA

Consistency from Diffusion ODEs

(

Data -Probability Flow ODE-Noise (\mathbf{x}_T, T) $(x_0, 0)$ $(\mathbf{x}_{t'}, t')$ (\mathbf{x}_t, t) $f_{\theta}(\mathbf{x}_t, t)$ $f_{\theta}(\mathbf{x}_{t'},t')$ $f_{\theta}(\mathbf{x}_T, T)$

probability flow ODE

diffusion ODE

Figure 1: Given a Probability Flow (PF) ODE that smoothly converts data to noise, we learn to map any point (e.g., x_t , $\mathbf{x}_{t'}$, and \mathbf{x}_T) on the ODE trajectory to its origin (e.g., \mathbf{x}_0) for generative modeling. Models of these mappings are called consistency models, as their outputs are trained to be consistent for points on the same trajectory.

$$\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{x}_t, t) - \frac{1}{2}g(t)^2 \nabla_{\boldsymbol{x}} \log q_t(\boldsymbol{x}_t)$$
$$\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = f(t)\boldsymbol{x}_t + \frac{g^2(t)}{2\sigma_t}\boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_t, t),$$

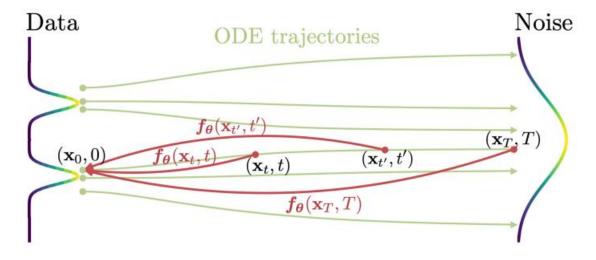


Figure 2: Consistency models are trained to map points on any trajectory of the PF ODE to the trajectory's origin.

consistency function $f_{\theta}(\mathbf{x},t)$

How to parameterize f_{θ} ?

 $\begin{array}{ll} \textit{consistency function} & \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x},t) \\ & \text{s.t.} & (\mathbf{x}_t,t) \mapsto \mathbf{x}_{\epsilon} & t \in [\epsilon,T] \end{array}$

boundary condition

$$oldsymbol{f}(\mathbf{x}_{\epsilon},\epsilon)=\mathbf{x}_{\epsilon}$$

$$f_{\theta}(\mathbf{x}, t) = c_{\text{skip}}(t)\mathbf{x} + c_{\text{out}}(t)F_{\theta}(\mathbf{x}, t)$$

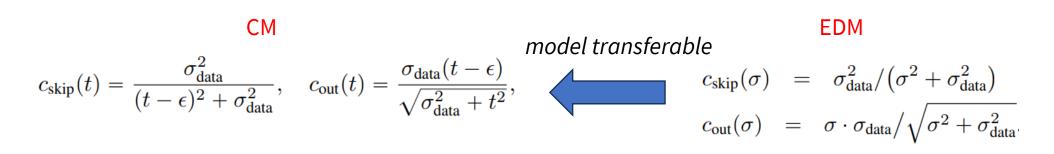
Free-form NN

$$c_{\rm skip}(\epsilon) = 1 \quad c_{\rm out}(\epsilon) = 0$$

Noise Schedule and Parameterization

• Following EDM, CM applied the VE schedule

$$\alpha_t = 1$$
, $\sigma_t = t$

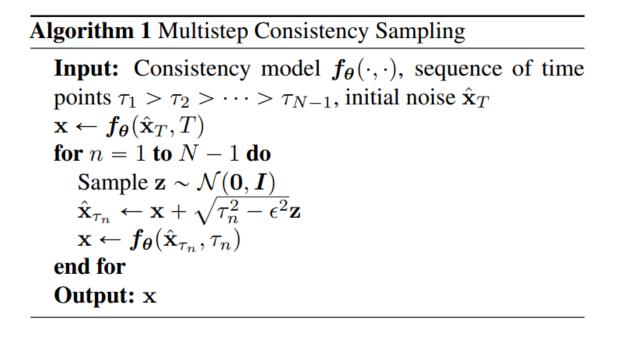

• The diffusion ODE is simply

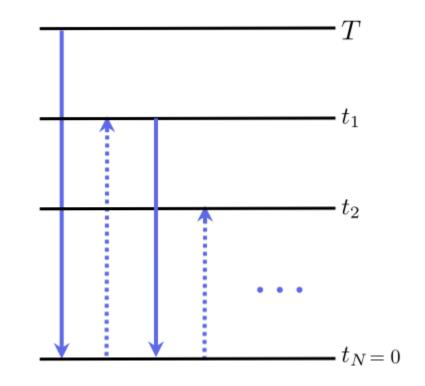
$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = -t\boldsymbol{s}_{\boldsymbol{\phi}}(\mathbf{x}_t, t).$$

• The parameterizations:

$$f_{\theta}(\mathbf{x}, t) = c_{\text{skip}}(t)\mathbf{x} + c_{\text{out}}(t)F_{\theta}(\mathbf{x}, t)$$

consistency function (CM) or data predictor (EDM)

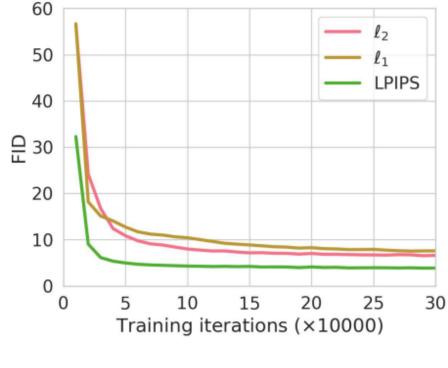

Types of CM


Consistency Distillation (CD) Consistency Training (CT) Distill ODE trajectories of a teacher EDM model ϕ Learn consistent ODE trajectories from data $\mathcal{L}_{CD}^{N}(\boldsymbol{ heta}, \boldsymbol{ heta}^{-}; \boldsymbol{\phi}) \coloneqq$ $\mathbb{E}[\lambda(t_n)d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}},t_{n+1}),\boldsymbol{f}_{\boldsymbol{\theta}^-}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}},t_n))]$ $\mathbb{E}[\lambda(t_n)d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}+t_{n+1}\mathbf{z},t_{n+1}),\boldsymbol{f}_{\boldsymbol{\theta}^-}(\mathbf{x}+t_n\mathbf{z},t_n))]$ $\hat{\mathbf{x}}_{t_n}^{\phi} = \mathbf{x}_{t_{n+1}} - (t_n - t_{n+1})t_{n+1}s_{\phi}(\mathbf{x}_{t_{n+1}}, t_{n+1})$ one-step ODE update

$$\boldsymbol{\theta}^- \leftarrow \operatorname{stopgrad}(\mu \boldsymbol{\theta}^- + (1-\mu)\boldsymbol{\theta})$$

"EMA self-teacher"

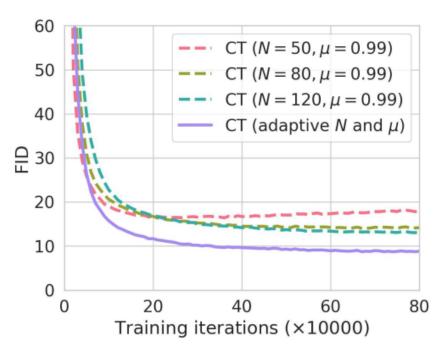
Sampling with CM



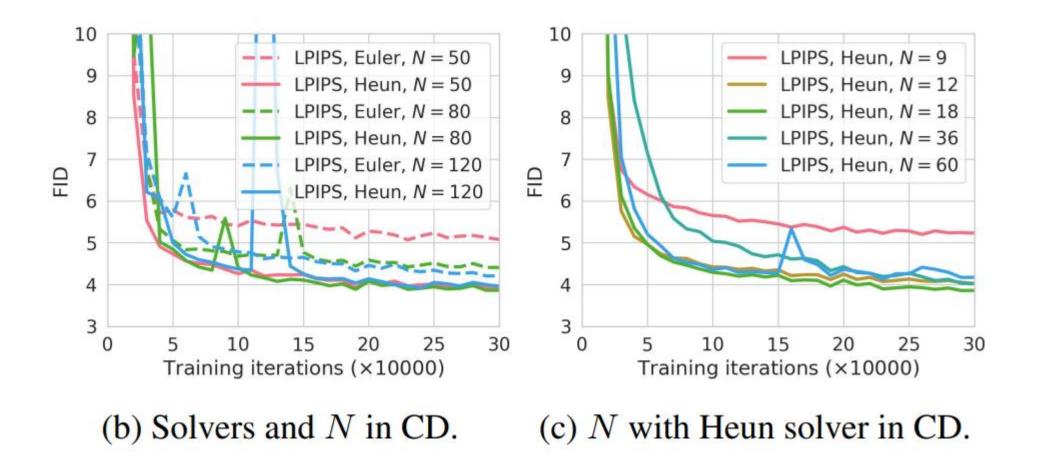
"Two-step generation often enhances the quality of one-step generation considerably, though increasing the number of sampling steps further provides diminishing benefits."

Choose the Distance Metric

 $\mathcal{L}_{CD}^{N}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}; \boldsymbol{\phi}) \coloneqq \mathbb{E}[\lambda(t_{n})\boldsymbol{d}(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \boldsymbol{f}_{\boldsymbol{\theta}^{-}}(\hat{\mathbf{x}}_{t_{n}}^{\boldsymbol{\phi}}, t_{n}))]$


 $\mathbb{E}[\lambda(t_n)d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}+t_{n+1}\mathbf{z},t_{n+1}),\boldsymbol{f}_{\boldsymbol{\theta}^-}(\mathbf{x}+t_n\mathbf{z},t_n))]$

(a) Metric functions in CD.


Choose the Number of Timesteps and EMA

- The number of timesteps: schedule $N(\cdot)$
- EMA rate: schedule $\mu(\cdot)$

(d) Adaptive N and μ in CT.

The One-Step ODE Solver

Results

Table 1: Sample quality on CIFAR-10. *Methods that require synthetic data construction for distillation.

METHOD	NFE (↓)	$FID(\downarrow)$	IS (†)
Diffusion + Samplers			
DDIM (Song et al., 2020)	50	4.67	
DDIM (Song et al., 2020)	20	6.84	
DDIM (Song et al., 2020)	10	8.23	
DPM-solver-2 (Lu et al., 2022)	10	5.94	
DPM-solver-fast (Lu et al., 2022)	10	4.70	
3-DEIS (Zhang & Chen, 2022)	10	4.17	
Diffusion + Distillation			
Knowledge Distillation* (Luhman & Luhman, 2021)	1	9.36	
DFNO* (Zheng et al., 2022)	1	4.12	
1-Rectified Flow (+distill)* (Liu et al., 2022)	1	6.18	9.08
2-Rectified Flow (+distill)* (Liu et al., 2022)	1	4.85	9.01
3-Rectified Flow (+distill)* (Liu et al., 2022)	1	5.21	8.79
PD (Salimans & Ho, 2022)	1	8.34	8.69
CD	1	3.55	9.48
PD (Salimans & Ho, 2022)	2	5.58	9.05
CD	2	2.93	9.75

Direct Generation			
BigGAN (Brock et al., 2019)	1	14.7	9.22
Diffusion GAN (Xiao et al., 2022)	1	14.6	8.93
AutoGAN (Gong et al., 2019)	1	12.4	8.55
E2GAN (Tian et al., 2020)	1	11.3	8.51
ViTGAN (Lee et al., 2021)	1	6.66	9.30
TransGAN (Jiang et al., 2021)	1	9.26	9.05
StyleGAN2-ADA (Karras et al., 2020)	1	2.92	9.83
StyleGAN-XL (Sauer et al., 2022)	1	1.85	
Score SDE (Song et al., 2021)	2000	2.20	9.89
DDPM (Ho et al., 2020)	1000	3.17	9.46
LSGM (Vahdat et al., 2021)	147	2.10	
PFGM (Xu et al., 2022)	110	2.35	9.68
EDM (Karras et al., 2022)	35	2.04	9.84
1-Rectified Flow (Liu et al., 2022)	1	378	1.13
Glow (Kingma & Dhariwal, 2018)	1	48.9	3.92
Residual Flow (Chen et al., 2019)	1	46.4	
GLFlow (Xiao et al., 2019)	1	44.6	
DenseFlow (Grcić et al., 2021)	1	34.9	
DC-VAE (Parmar et al., 2021)	1	17.9	8.20
СТ	1	8.70	8.49
СТ	2	5.83	8.85

Content

• Consistency Models (ICML 2023)

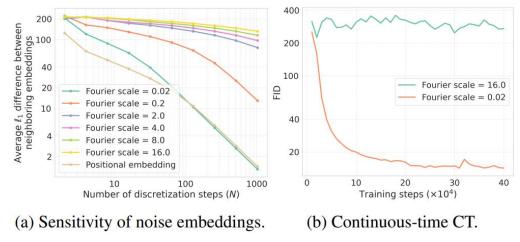
Technical Improvement

- Improved Techniques for Training CM (ICLR 8866)
- Consistency Trajectory Models (ICLR 8666)

Applications to Text-to-Image Model

- Latent Consistency Models (ICLR 6555)
- LCM-LoRA

Motivation

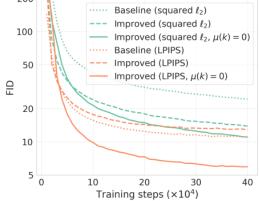

- CD requires an additional model and has limited performance
- CD and CT relies on LPIPS, which may leak ImageNet features and inflate FID

Goal:

• Improve the two-step generation of CT to 100-step generation of diffusion models

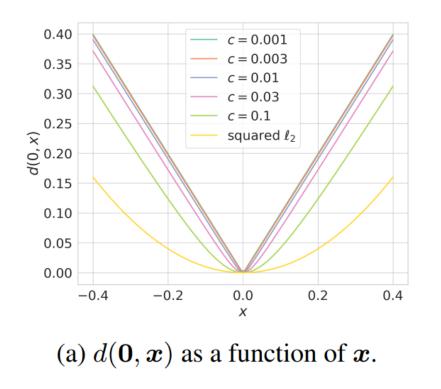
Improved Techniques (1): weighting, Fourier scale and dropout

- Weighting: larger weight at lower noise levels
 - Weighting function $\lambda(\sigma_i) = 1$ $\lambda(\sigma_i) = \frac{1}{\sigma_{i+1} \sigma_i}$
- Fourier scale: less sensitive noise embedding layer

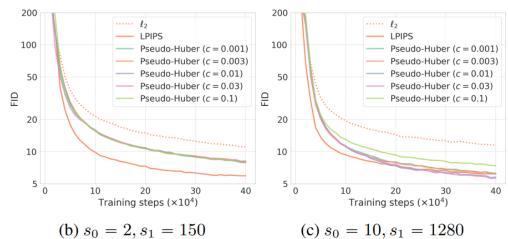


• Dropout: larger rate

Improved Techniques (2): remove EMA for teacher


• EMA causes inconsistency for CT even when the data is a single point ξ

Proposition 1. Given the notations introduced earlier, and using the uniform weighting function $\lambda(\sigma) = 1 \text{ along with the squared } \ell_2 \text{ metric, we have} \qquad \text{no signals of } \xi$ $\lim_{N \to \infty} \mathcal{L}^N(\theta, \theta^-) = \lim_{N \to \infty} \mathcal{L}^N_{CT}(\theta, \theta^-) = \mathbb{E}\left[\left(1 - \frac{\sigma_{\min}}{\sigma_i}\right)^2(\theta - \theta^-)^2\right] \quad if \theta^- \neq \theta \qquad (6)$ $\lim_{N \to \infty} \frac{1}{\Delta \sigma} \frac{\mathrm{d}\mathcal{L}^N(\theta, \theta^-)}{\mathrm{d}\theta} = \begin{cases} \frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}\left[\frac{\sigma_{\min}}{\sigma_i^2}\left(1 - \frac{\sigma_{\min}}{\sigma_i}\right)(\theta - \xi)^2\right], & \theta^- = \theta \\ +\infty, & \theta^- < \theta \qquad (7) \\ -\infty, & \theta^- > \theta \end{cases}$



Improved Techniques (3): Pseudo-Huber loss

$$d(x, y) = \sqrt{\|x - y\|_2^2 + c^2} - c$$

$c = 0.00054\sqrt{d}$, d is data dimensionality

Improved Techniques (4): discretization/noise schedule

Discretization curriculum

$$\begin{aligned} N(k) &= \\ \left[\sqrt{\frac{k}{K} ((s_1 + 1)^2 - s_0^2) + s_0^2} - 1 \right] + 1 \end{aligned} \qquad \begin{aligned} N(k) &= \min(s_0 2^{\lfloor \frac{k}{K'} \rfloor}, s_1) + 1, \\ \text{where } K' &= \left\lfloor \frac{K}{\log_2 \lfloor s_1 / s_0 \rfloor + 1} \right\rfloor \end{aligned}$$

$$s_0 = 2, s_1 = 150, \mu_0 = 0.9 \text{ on CIFAR-10}$$

$$s_0 = 10, s_1 = 1280$$

$$s_0 = 2, s_1 = 200, \mu_0 = 0.95 \text{ on ImageNet } 64 \times 64$$

$$c = 0.00054\sqrt{d}, d \text{ is data dimensionality}$$

Noise schedule

$$\sigma_{i}, \text{ where } i \sim \mathcal{U}\llbracket 1, N(k) - 1 \rrbracket$$

$$\sigma_{i}, \text{ where } i \sim p(i), \text{ and } p(i) \propto$$

$$\operatorname{erf}\left(\frac{\log(\sigma_{i+1}) - P_{\text{mean}}}{\sqrt{2}P_{\text{std}}}\right) - \operatorname{erf}\left(\frac{\log(\sigma_{i}) - P_{\text{mean}}}{\sqrt{2}P_{\text{std}}}\right)$$

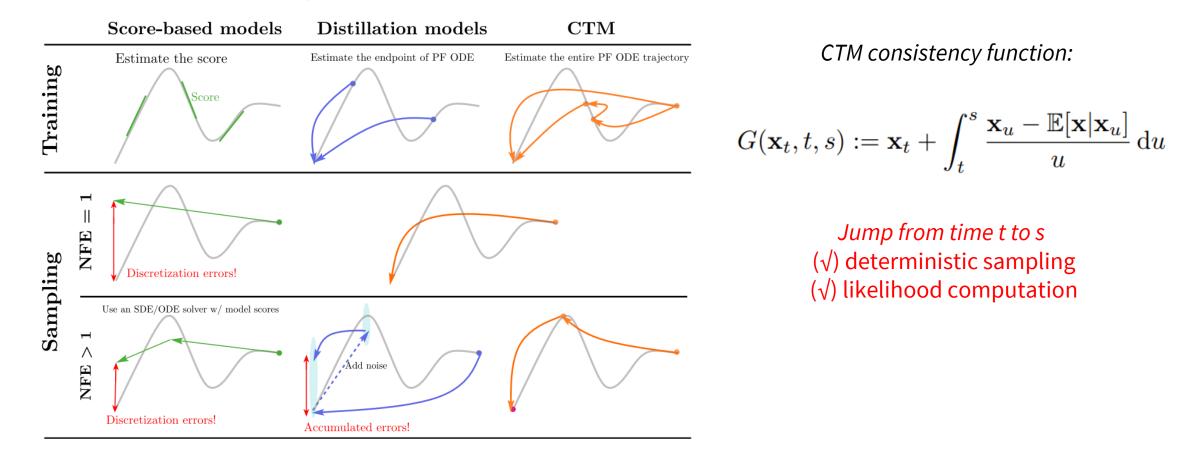
Results

2000	2.38	9.83
2000	2.20	9.89
1000	3.17	9.46
147	2.10	
110	2.35	9.68
35	2.04	9.84
35	1.77	
60	40.6	6.02
1	23.5	7.18
1	48.9	3.92
1	46.4	
1	14.7	9.22
1	8.32	9.21
1	2.92	9.83
1	8.70	8.49
2	5.83	8.85
1	2.83	9.54
2	2.46	9.80
1	2.51	9.76
2	2.24	9.89
	$2000 \\ 1000 \\ 147 \\ 110 \\ 35 \\ 35 \\ 60 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Content

• Consistency Models (ICML 2023)

Technical Improvement


- Improved Techniques for Training CM (ICLR 8866)
- Consistency Trajectory Models (ICLR 8666)

Applications to Text-to-Image Model

- Latent Consistency Models (ICLR 6555)
- LCM-LoRA

Motivation

• Is it reasonable to always predict the clean data at time 0?

How to Parameterize G?

consistency function

$$G(\mathbf{x}_t, t, s) := \mathbf{x}_t + \int_t^s \frac{\mathbf{x}_u - \mathbb{E}[\mathbf{x}|\mathbf{x}_u]}{u} \, \mathrm{d}u$$

boundary condition

$$G(\mathbf{x}_t, t, t) = \mathbf{x}_t, \qquad G(\mathbf{x}_t, t, 0) = f(\mathbf{x}_t, t)$$
$$G(\mathbf{x}_t, t, s) = \frac{s}{t}\mathbf{x}_t + \left(1 - \frac{s}{t}\right)g(\mathbf{x}_t, t, s)$$

The Property of g

$$\lim_{s \to t} g(\mathbf{x}_t, t, s) = \mathbf{x}_t + t \lim_{s \to t} \frac{1}{t - s} \int_t^s \frac{\mathbf{x}_u - \mathbb{E}[\mathbf{x}|\mathbf{x}_u]}{u} \, \mathrm{d}u = \mathbb{E}[\mathbf{x}|\mathbf{x}_t]$$

 $g(\mathbf{x}_t, t, t)$ is the data predictor!

$$\boldsymbol{x}_{\theta}(\boldsymbol{x}_t, t) = \frac{\boldsymbol{x}_t - \sigma_t \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_t, t)}{\alpha_t}$$

We can add extra score matching loss

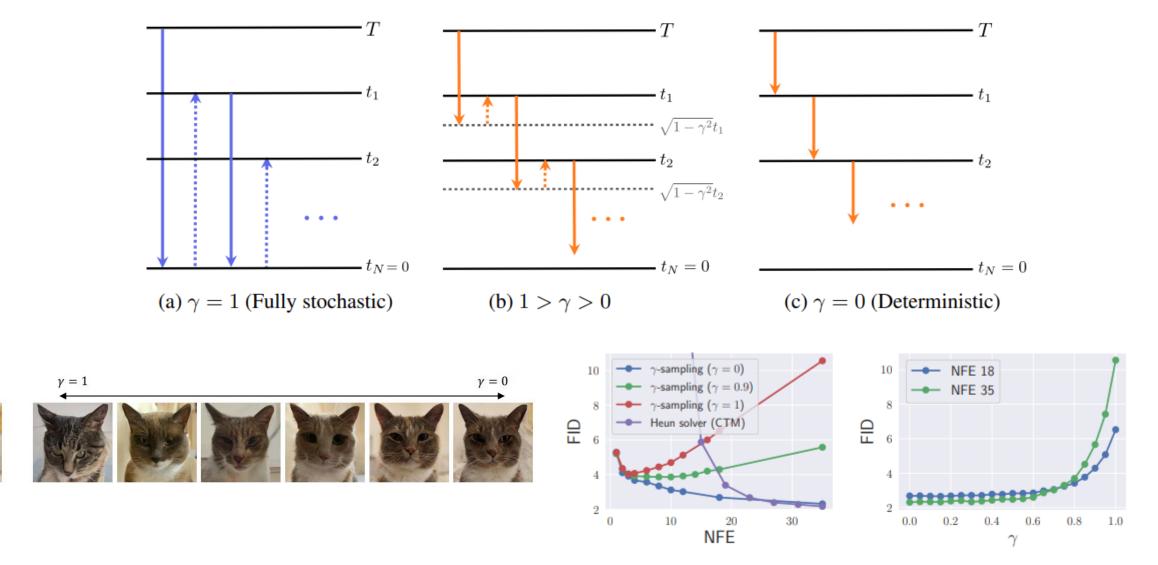
Consistency Models

CTM training loss

$$\mathcal{L}_{\mathrm{CTM}}(\boldsymbol{\theta}; \boldsymbol{\phi}) := \mathbb{E}_{t \in [0,T]} \mathbb{E}_{s \in [0,t]} \mathbb{E}_{\mathbf{x}_0, p_{0t}(\mathbf{x}|\mathbf{x}_0)} \left[d(\mathbf{x}_{\mathrm{target}}(\mathbf{x}, t, u, s), \mathbf{x}_{\mathrm{est}}(\mathbf{x}, t, s)) \right]$$

$$G_{\mathrm{sg}(\boldsymbol{\theta})}(G_{\mathrm{sg}(\boldsymbol{\theta})}(\mathrm{Solver}(\mathbf{x}_t, t, u; \boldsymbol{\phi}), u, s), s, 0)$$

$$G_{\mathrm{sg}(\boldsymbol{\theta})}(G_{\mathrm{sg}(\boldsymbol{\theta})}(\mathbf{x}_{\mathrm{target}}(\mathbf{x}, t, u; \boldsymbol{\phi}), u, s), s, 0)$$


A combination of CD and CT!

$$\mathcal{L}_{\text{DSM}}(\boldsymbol{\theta}) = \mathbb{E}_{t,\mathbf{x}_0,\mathbf{x}_t|\mathbf{x}_0}[\|\mathbf{x}_0 - g_{\boldsymbol{\theta}}(\mathbf{x}_t,t,t)\|_2^2]$$

$$\mathcal{L}_{\text{GAN}}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \mathbb{E}_{p_{\text{data}}(\mathbf{x}_0)}[\log d_{\boldsymbol{\eta}}(\mathbf{x}_0)] + \mathbb{E}_{t, \mathbf{x}_t} \left[\log \left(1 - d_{\boldsymbol{\eta}}(\mathbf{x}_{\text{est}})\right)\right]$$

Consistency Models

γ-Sampling

Reference

Results

Table 2: Performance comparisons on CIFAR-10.

Model	NFE	Uncon	ditional	Conditional	
		FID↓	NLL↓	FID↓	
GAN Models					
BigGAN (Brock et al., 2018)	1	8.51	×	-	
StyleGAN-Ada (Karras et al., 2020)	1	2.92	×	2.42	
StyleGAN-D2D (Kang et al., 2021)	1	-	×	2.26	
StyleGAN-XL (Sauer et al., 2022)	1	-	×	1.85	
Diffusion Models – Score-based Samp	ling				
DDPM (Ho et al., 2020)	1000	3.17	3.75	-	
DDIM (Sana at al. 2020a)	100	4.16	-	-	
DDIM (Song et al., 2020a)	10	13.36	-	-	
Score SDE (Song et al., 2020a)	2000	2.20	3.45	-	
VDM (Kingma et al., 2021)	1000	7.41	2.49	-	
LSGM (Vahdat et al., 2021)	138	2.10	3.43	-	
EDM (Karras et al., 2022)	35	2.01	2.56	1.82	
Diffusion Models – Distillation Sampli	ng				
KD (Luhman & Luhman, 2021)	1	9.36	×	-	
DFNO (Zheng et al., 2023)	1	3.78	×	-	
2-Rectified Flow (Liu et al., 2022)	1	4.85	×	-	
PD (Salimans & Ho, 2021)	1	9.12	×	-	
CD (official report) (Song et al., 2023)	1	3.55	×	-	
CD (retrained)	1	10.53	×	-	
CD + GAN (Lu et al., 2023)	1	2.65	×	-	
CTM (ours)	1	<u>1.98</u>	2.43	<u>1.73</u>	
PD (Salimans & Ho, 2021)	2	4.51			
CD (Song et al., 2023)	2	2.93	-	-	
CTM (ours)	2	1.87	2.43	1.63	
Models without Pre-trained DM – Dire	ect Gene	ration			
СТ	1	8.70	×	-	
CTM (ours)	1	2.39	-	-	

The GAN loss is tricky in improving FID.

Consistency Models

Content

• Consistency Models (ICML 2023)

Technical Improvement

- Improved Techniques for Training CM (ICLR 8866)
- Consistency Trajectory Models (ICLR 8666)

Applications to Text-to-Image Model

- Latent Consistency Models (ICLR 6555)
- LCM-LoRA

Latent Consistency Models (LCM) w.r.t. CM

• Parameterization for more general noise schedule

$$\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{c}, t) = c_{\text{skip}}(t)\boldsymbol{z} + c_{\text{out}}(t) \left(\frac{\boldsymbol{z} - \sigma_t \hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{c}, t)}{\alpha_t}\right)$$

• To cope with classifier-free guidance:

$$\mathcal{L}_{\mathcal{CD}}\left(\boldsymbol{\theta},\boldsymbol{\theta}^{-};\Psi\right) = \mathbb{E}_{\boldsymbol{z},\boldsymbol{c},\omega,n}\left[d\left(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z}_{t_{n+1}},\omega,\boldsymbol{c},t_{n+1})\right),\boldsymbol{f}_{\boldsymbol{\theta}^{-}}(\hat{\boldsymbol{z}}_{t_{n}}^{\Psi,\omega},\omega,\boldsymbol{c},t_{n})\right)\right]$$

augmented consistency function with scale ω

• Skipping timesteps for accelerated training

$$\mathcal{L}_{\mathcal{CD}}\left(\boldsymbol{\theta},\boldsymbol{\theta}^{-};\Psi\right) = \mathbb{E}_{\boldsymbol{z},\boldsymbol{c},\omega,n}\left[d\left(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z}_{t_{n+k}},\omega,\boldsymbol{c},t_{n+k}),\boldsymbol{f}_{\boldsymbol{\theta}^{-}}(\boldsymbol{\hat{z}}_{t_{n}}^{\Psi,\omega},\omega,\boldsymbol{c},t_{n})\right)\right]$$

Skipping timesteps for accelerated training

$$\mathcal{L}_{\mathcal{CD}}\left(\boldsymbol{\theta},\boldsymbol{\theta}^{-};\Psi\right) = \mathbb{E}_{\boldsymbol{z},\boldsymbol{c},\omega,n}\left[d\left(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z}_{t_{n+k}},\omega,\boldsymbol{c},t_{n+k}),\boldsymbol{f}_{\boldsymbol{\theta}^{-}}(\boldsymbol{\hat{z}}_{t_{n}}^{\Psi,\omega},\omega,\boldsymbol{c},t_{n})\right)\right]$$

k too small: slow convergence

k too large: large discretization error

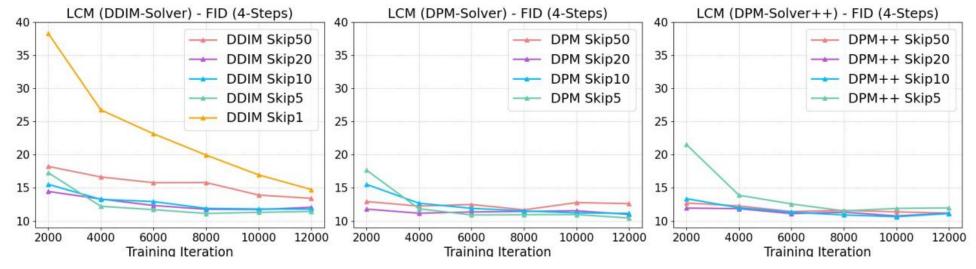


Figure 3: Ablation study on different ODE solvers and skipping step k. Appropriate skipping step k can significantly accelerate convergence and lead to better FID within the same number of training steps.

Consistency Models

LCM: Results

Model (512 \times 512) Reso	$FID\downarrow$				CLIP SCORE ↑			
	1 Step	2 Steps 4	S TEPS	8 Steps	1 Steps	2 Steps	4 Steps	8 Steps
DDIM (Song et al., 2020a)	183.29	81.05	22.38	13.83	6.03	14.13	25.89	29.29
DPM (Lu et al., 2022a)	185.78	72.81	18.53	12.24	6.35	15.10	26.64	29.54
DPM++ (Lu et al., 2022b)	185.78	72.81	18.43	12.20	6.35	15.10	26.64	29.55
Guided-Distill (Meng et al., 2023)	108.21	33.25	15.12	13.89	12.08	22.71	27.25	28.17
LCM (Ours)	35.36	13.31	11.10	11.84	24.14	27.83	28.69	28.84

Table 1: Quantitative results with $\omega = 8$ at 512×512 resolution. LCM significantly surpasses baselines in the 1-4 step region on LAION-Aesthetic-6+ dataset. For LCM, DDIM-Solver is used with a skipping step of k = 20.

Model (768 \times 768) Reso	$FID\downarrow$				CLIP SCORE ↑			
	1 Step	2 Steps 4	4 Steps	8 STEPS	1 Steps	2 Steps	4 Steps	8 Steps
DDIM (Song et al., 2020a)	186.83	77.26	24.28	15.66	6.93	16.32	26.48	29.49
DPM (Lu et al., 2022a)	188.92	67.14	20.11	14.08	7.40	17.11	27.25	29.80
DPM++ (Lu et al., 2022b)	188.91	67.14	20.08	14.11	7.41	17.11	27.26	29.84
Guided-Distill (Meng et al., 2023)	120.28	30.70	16.70	14.12	12.88	24.88	28.45	29.16
LCM (Ours)	34.22	16.32	13.53	14.97	25.32	27.92	28.60	28.49

Table 2: Quantitative results with $\omega = 8$ at 768×768 resolution. LCM significantly surpasses the baselines in the 1-4 step region on LAION-Aesthetic-6.5+ dataset. For LCM, DDIM-Solver is used with a skipping step of k = 20.

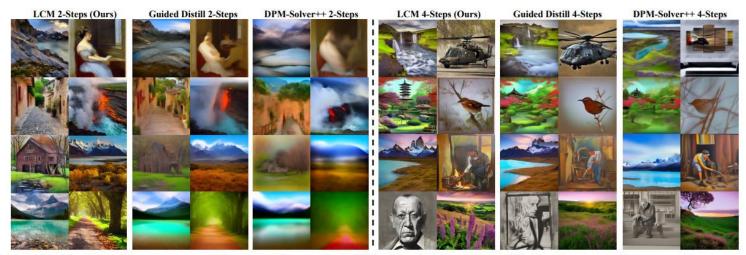
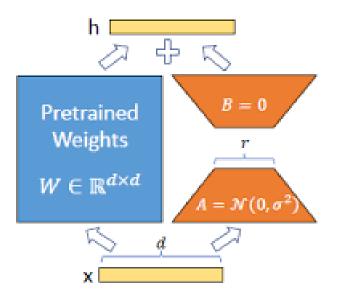
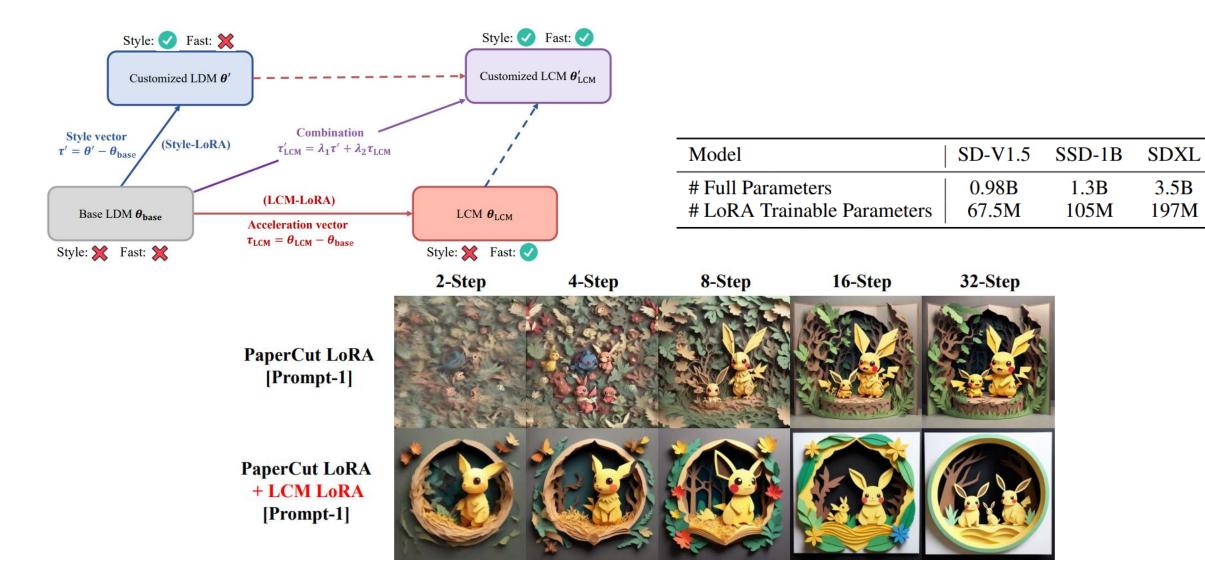



Figure 2: Text-to-Image generation results on LAION-Aesthetic-6.5+ with 2-, 4-step inference. Images generated by LCM exhibit superior detail and quality, outperforming other baselines by a large margin.

LoRA



Merge LoRA with LoRA

$$\Delta W = (\alpha_1 A_1 + \alpha_2 A_2)(\alpha_1 B_1 + \alpha_2 B_2)^T$$

 $W' = W + \Delta W$ $\Delta W = AB^T$

LCM-LoRA

References

[1] Yang Song, Prafulla Dhariwal, Mark Chen, Ilya Sutskever. Consistency models. ICML 2023

[2] Yang Song, Prafulla Dhariwal. Improved Techniques for Training Consistency Models. arXiv:2310.14189 (ICLR 8866)

[3] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong He, Yuki Mitsufuji, Stefano Ermon. Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion. arXiv:2310.02279 (ICLR 8666)

[4] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, Hang Zhao. Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference. arXiv:2310.04378 (ICLR 6555)

[5] Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo Huang, Jian Li, Hang Zhao. LCM-LoRA: A Universal Stable-Diffusion Acceleration Module. arXiv:2311.05556