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Push-forward map

@ Suppose we have two distributions
o Model distribution
PO = Pdata

o Gaussian distribution which is easy to sample
P1 = N(O, /)
@ We can learn a push-forward map (transport map) Xj g which satisfy
po = X1,0%#p1

@ The map can be either deterministic or stochastic.
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Push-forward map: generative modeling

@ Training:
o If po can be explicitly or implicitly estimated through Xj g, maximum
likelihood training is possible:

max K, [logpo] or min Dkr(pdata || po)

o Otherwise, implicitly make pg closer to pgata, €.8. GAN.
e Sampling:

e Sample x; ~ p1

o OUtpUt Xo = Xl,O(Xl)
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Continuous normalizing flows: definition

@ CNF model the transport as an ODE

d

Xt = w(Xee(¥), Xer()=x 20

)

where we introduce continuous time between [0,1], and the marginal
distributions {p;}§ satisfy

Pt = Xr,t#ﬂf

@ The transport is determined by velocity field v¢(x), but we need to
solve an ODE.
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Continuous normalizing flows: density computation

@ The continuity equation is a PDE connecting p and v, which is a
special case of Fokker-Planck equation

Otpe(x) + V - (ve(x)pe(x)) = 0

Instantaneous Change of Variables|1]

dlog Pt(Xr,t(X))

p = —V - v(Xr.+(x))

)

o If we assume p; is Gaussian, we can exactly compute p,(x) for any
T, X by

) = Xea ) ep ([Tl e

so we can directly train MLE using adjoint method and trace
estimator|2].
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Continuous normalizing flows: score computation

@ We can also evaluate the score V log p:(x) for any t, x by the
following theorem

Instantaneous Change of Score

dV log Pt(Xr,t(X))

dt = —(Vw(X7,¢(x))) v log pe(Xr,¢(x)) = V(V - ve(X:.+(x)))
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Optimal transport: basics[3]

Optimal transport cost OT(u,v) and optimal transport plan T*

@ Monge's Formulation

OT(p,v) = _inf /Xc(x, T(x))du(x)

TH#u=v

@ Kantorovich's Relaxation

OT(u) = _inf [ dxy)dn(xy)
Te€N(p.v) Jxxy
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Optimal transport: basics

@ Kantorovich's Duality

0T(u1) =sup{ [ et + [ M) < o)+ t9) < el 0

which can be expressed using c-transforms
uc(y) = ianEX{C(X7 y) - U(X)}7 ‘/:(X) = infyey{c(x, y) - V(y)}
@ Primal-dual relationship

For c(x,y) = h(x — y) with strictly convex h and p is absolutely
continuous supported on the compact set

T"(x) = x = (Vh)~H(Vu'(x))
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Optimal transport: Wasserstein-1 case

o Wasserstein-1 distance: OT cost when c(x,y) = [|[x— y||1

@ The simplified form

Wiln) = sp { [ st - / )}

lull.<1

o WGAN:

e v: data distribution
@ /. generator
e u: discriminator
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Optimal transport: Wasserstein-2 case

o Wasserstein-2 distance: v/OT cost when c(x, y) = 3|[x— y||3

o Define f{x) = 3|xII3 — u(x), &(y) = 5[5 — v(¥). then
fix) + g(y) > (x,y). The simplified form is

W3(p,v) = Cup — feCi\r};(u {/ Ax)du(x / (y)dv(y }

where f*(y) = sup,cx{(x,¥) — f{x)} is convex conjugate,
Cuw = 3E[IX[3 + [lylI3] is constant.

@ Max-min optimization of convex functions, see ICNN[4].
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Diffusion models

@ Define a fixed forward diffusion process, with initial distribution

do = Pdata
dx; = f(t)xedt + g(t)dw

where w; is Wiener process.

@ The marginal distribution of x; is ¢, where g; is close to Gaussian.
The transition kernel qp; is tractable

th(‘|X0) = N(atXO, Ugl)

and have relationship with forward SDE

O O e
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Backward SDE and probability flow ODE

We have the following two dynamics that produce the same marginals as

{Qt}é

e Backward SDE, starting from q;

dx = (f(t)xe — & (t)V log qe(x:))dt + g(t)dw:

@ Probability flow ODE

o = vilxe) = flt)xe - %g‘z(t)v log g¢(xt)

where log g¢(x;) is true score of forward diffusion.
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Flow matching: motivation

@ Types of training CNF
o Simulation-based: need to simulate the model ODE 2% = ¥;(x;) to get
samples on the trajectory, e.g. directly train MLE using change of
variable.
e Simulation-free: no need to simulate the model ODE.

@ Since sampling from diffusion marginal g; is easy, we can match the
model velocity field 7¢(x) to v¢(x), that of the probability flow ODE.
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Flow matching objective

We define the following objectives[5]

o Flow matching
H(©) = Etpqrll7e(x) = ve(3)112]
o Conditional flow matching
G(9) = Etaxo~anoaas [P fe(x0, x1)) = Dehe(x0, x1) 3]

where li(xp, x1) is the diffusion trajectory from xg to xi:
le(x0, x1) = quexo + 0ex1.
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Conditional flow matching: illustration

Xo ~ qo X1~ Qq1
V= 8tlt(X07 Xl) = Qg 01X 1
xt = l(X0,X1) = @ Xo. ming By xq ¢ [IVo(xt, 1) — v|13]

The path is straight when a; + o = 1.
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Flow matching: equivalence and Wasserstein-2 bound

@ It's easy to prove that FM and CFM are equivalent. Actually, they are
reparameterization of score matching and denoising score matching.

Equivalence of FM and CFM[5], [6]

G(V) = H(Y) + C(v)

where C(v) is a constant to V. When ¥ = v, they both reach minimum.

@ Besides, [5] proves that the FM objective bound the Wasserstein-2
distance between the model distribution py and the data distribution

do

Woasserstein-2 bound for FM

W3(qo, po) < € T2KH(D)

where K is Lipschitz constant of V.
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Experiments: flow matching

CIFAR-10 ImageNet 32x32 ImageNet 64 x64

Model NLL| FID| NLL| FID| NLL| FID|
Normalizing Flow

FFIORD (Grathwoni et al., 2018) 3.40

GlOW (Kingma & Dhariwal, 2018) 335 4.09 3.81

Residual Flow (cnen etar, 2019) 3.28 4.01 3.76

Flow++ qoctal. 2019) 3.09 3.86 3.69
Variational Autoencoder

NVAE (vandat & Kautz, 2020) 291 3.92

Very Deep VAE (cuiia, 2020) 2.87 3.80 3.52
Diffusion Model

DDPM o et a1, 202 3.75 3.17

VDM (kingma et 2.65 7.41 3.72 3.40

Score SDE (sons ctat. 20200) 2.99 2.92

Soft Truncation (kimctat, 2022) 2.88 3.45 3.85 8.42

ScoreFlow (sons etal. 2021) 281 5.40 3.76 10.18
Ablation

Score Matching %/ Diffusion path 3.16 21.96 3.57 22.38 3.40 19.61
Ours

Flow Matching %/ Diffusion path 3.10 10.31 3.56 8.02 3.33 16.06

Flow Matching ¥/ OT path 3.00 6.96 3.53 5.25 331 14.00

Table 1: Likelihood and quality of generated samples.
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Experiments: flow matching

@ OT path and flow matching are more robust to different sampler and
fewer steps

107 —e— Euler —e— Euler —e— Euler
40 +— Midpoint a0 Midpoint 40 Midpoint
5 an —— RK4 a0 —— RK4 an R
“ 107 20| 20 20|
10, 10 10,
7 % & 8 100 0 40 60 80 100 % @ s 100 7 % e 8 10
NFE NFE NFE NFE
Error of ODE solution Flow matching ¥/ OT Flow matching “'/ Diffusion Score matching *'/ Diffusion

Figure 6: Flow Matching, especially when using OT paths, allows us to use fewer evaluations for
sampling while retaining similar numerical error (left) and sample quality (right). Results are shown
for models trained on ImageNet 32 %32, and numerical errors are for the midpoint scheme.

Kaiwen Zheng (Tsinghua University) CNF, DPM and OT for GM 2022.11.18



Towards optimal transport: rectified flow

@ When li(xp,x1) = (1 — t)xo + tx1, the path l(xo, x1) is straight for a
pair of given (xp, x1), but the optimal v; is not straight.

@ [7] propose to rectify the learned ODE many times
k+1) _ ; NV 2 —(1—
WD —argminE, o lbaxomvGalBl xe= (1ot

L

- Transport Cost
- Straightness

E"'""---...-_.
A\ N\ =
o To
Reflow Step
(a)The 1st rectified flow Z*  (b) Reflow Z2 (c) Reflow Z° (d) Transport cost,
Z' = RectFlow((Xo, X1)) Z? = RectFlow((Z}, Z}1)) Z% = RectFlow((Z3, Z7)) Straightness

Figure 3: (a)-(c) Trajectories of the reflows on a toy example (7o: purple dots, 71: red dots; the green and blue
lines are trajectories connecting different modes of 7o, 71). (d) The straightness and the relative L2 transport
cost v.s. the reflow steps. See Appendix D.6 for more information.
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Rectified flow: properties[3]

@ In the first step, xp, x1 are independently sampled from qg, g1. In the
following rectified steps, x; is determined by xg using the transport
map of last step’s flow.

o UK preserves the marginal distribution qg, g;.

o Wkt1) yields no larger convex transport cost than 4.

@ A coupling (xp, x1) is called straight if x; = X(()k%(xo) = Xf)kfrl)(xo).
It's necessary if (xo, x1) is c-optimal transport.
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Experiments: rectified flow

Method NFED S D) Reall (D
A One-Step Ger tior
“SNGAN (Miyato et al., 2018) R 047
Method NFE() 1S(H FID (1) Recall () StyleGAN2 (Karras et al., 2020) 1 9.18 832 041
ODE Ony Step Generation (Euler solver, N=1) SHIeGANK (Sweretal, 20) ! o 18 047
- ] StyleGAN2 + st al., 202
T-Rectified Flow (-Diseill) LI3(9.08) 378(6.18) — 0004 StyleGAN2 + DiffAug (Zhao et al., 2020) 1 9.40 579 042
2-Rectified Flow (+Distill) 1 8.08(9.01) 1221(4.85) 034(0.50) TransGAN + Diff Aug (Jiang et al., 2021) 1 9.02 9.26 041
3-Rectified Flow (+Distill) 1 847879 8.5(5.21) 041051 AN wilh UNet e siep Generation
VP ODE (Song et al., 2020b) (+Distill) 1 120(873) 451(16.23)  0.0(0.29) (T=1) (Zheng et T, 2022) T 865
sub-VP ODE (Song et al., 2020b) (+Distill) 1 121 (8.80) 451 (/14.32) 0.0 (0.35) Denoising Diffusion GAN (T=1) (Xiao etal. 2021) 1 893
ODE Full Simulation (Runge—Kutta (RK43), Adapiive N) One Siep Generation (Enler s
o] if DDIM Distillation (Luhman & Luhman, 2021) T .36 9.36 051
T-Rectified Flow 27 9.60 258 057
2-Rectified Flow 110 024 336 034 NCSN++ (VE ODE) (Song el 020) (+Disiy 1 118257 461259 00000)
3-Rectified Flow 104 9.01 3.96 053 DDIM (Song et al. 20208) i N 220 :
VP ODE (Song et al., 2020b) 140 937 3.93 051 = P e I e n’ el
sub-VP ODE (Song et al., 2020b) 146 9.46 316 055 ~NCSN (VEODE Sorg el 020 Full Simaloin (onge-Fotts (LS Adepive 1)
SDE Full Simulation (Euler solver, N=2000] SDE ol Smlaion (Bl ml\w]
VP SDE (Song et al., 2020b) 2000 958 255 058 DDPM (o et ., 2020) 000 946 Bl 057
sub-VP SDE (Song et al., 2020b) 2000 9.56 261 058 NCSN++ (VE SDE) (Song et al., 2020b) w58 b 059
Full Simulation (Euler solver)
DDIM (Song t al, 2020a) 0 - 336 -
DDIM (Song et al., 2020a) 100 - 4.16 -
(a) Results using the DDPM++ architecture. (b) Recent results with different architectures reported in literature.
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Direct training of CNF: problem

target target

p(z(x,T))
-

o Complex dynamics -

@ Low quality samples

@ Large number of evaluation

x
steps = \/ \
X X
source source
(a) Optimal transport map (b) generic flow

Figure 1. Optimal transport map and a generic normalizing flow.
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Regularization

@ To simplify the dynamics, a simple method is to regularize the L;
transport cost[9], [10]

Etsevpell| ve(x) 3]

@ Recently, [11], [12] gives similar results about the "steepest flow” to
minimize Dk1,(pt || p1)-
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The steepest flow

@ Under the Wasserstein-2 metric in probability space, the steepest flow
to minimize the free energy

Flo) = [ ) logo()ae-+ [ V()

is the Wasserstein gradient flow, which satisfy the Fokker-Planck
equation

0ep =V - (pVV+ Vp)

@ Its time discretization is called JKO scheme

_ 1
P4 = argmin F(p) + - WE(p), p)
P
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The steepest flow

@ When V = —log p1, the free energy is KL divergence

F(p) = Dxw(p || p1)-
@ In this case, the dynamics of the steepest flow satisfies

ve(Xo,:(x)) = Vlog p1(Xo,t(x)) — V log pt(Xo,¢(x))

@ This equation can act as a regularizer:
e Vv; is parameterized by network

e p1 is known (e.g. Gaussian)
e Vlogp; i.e. score can be computed by solving ODE (instantaneous

change of score)
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Comparisons

@ Simulation-free
e Matching a fixed forward process
e Simple to train
e Can be used on high-dimensional data
e State-of-the-art likelihood, better than autoregressive models

@ Simulation-based
o Free-form
o Complex to train
o Need regularization
o Often used on toy data
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Discuss: why ODE, not SDE

@ For sampling
o SDE's stochasticity makes the sampling (using backward SDE)
unstable. (hundreds of steps)
o ODE’ determinism and various mature samplers allow the development
of fast sampling algorithms e.g. DDIM, DPM-Solver. (10~20 steps)
o In pursuit of extreme quality, SDE>ODE (e.g. 1000 steps).
o For evaluating p;

o We are actually solving the associated PDE (Fokker-Planck equation)

Iepe(x) = =V - (f{xe, t)pe(x) — %gz(t)th(x)), P0o = Pdata

o We can evaluate expectation quantity E..,,[f(x)] by simulating the
forward SDE

e But for point estimation p:(x) and quantities like entropy
S¢ = Exwp,[— log pi(x)], we need to learn an ODE[13]
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Some interesting problems

Optimality of different diffusion schedule
How to analyse parameterization's effect on learning

How to design flow matching weight when training sample quality

Connection to Schrédinger Bridge
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Thank you!
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